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BIOS 516 Introduction to Large-
Scale Biomedical Data Analysis

Lecture 2

Steve Qin

September 7, 2021

Background

• What is Big Data?

• What is the big deal?

• Where can I find biomedical Big Data?

• How can we take advantage of it?
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BigData

• Volume

• Variety

• Velocity

https://en.wikipedia.org/wiki/Big_data

By Ender005 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=49888192

FAIR principals

By SangyaPundir - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=53414062
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Where is biomedcial BigData? 

• GEO, ArrayExpress

• mSigDB

• ENCODE

• TCGA, 

• GTEx

• PheGenI, GWAS catalog

• 1000 Genomes, 

• UKBB

• …

GEO, SRA, ArrayExpress and GSA

• Repositories

• For sharing high-throughput experimental data, often required by 
publishers.
• Originally designed to share microarray data

• Data uploaded by members of the whole research community

• Capture and display rich metadata, and enables query of the 
metadata. 
• e.g., mouse brain, K562 cell lines. 

• No quality control, honor system

• Totally free. No registration is required. 

• Operate like a collection of supplemental data of papers.  
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MIAME and MINSEQE guidelines

MIAME (Minimum Information About a Microarray Experiment)
MINSEQE (Minimum Information About a Next-generation Sequencing Experiment)
• Raw data for each assay (e.g., CEL or FASTQ files)
• Final processed (normalized) data for the set of assays in the study (e.g., the gene 

expression data count matrix used to draw the conclusions in the study)
• Essential sample annotation (e.g., tissue, sex and age) and the experimental 

factors and their values (e.g., compound and dose in a dose response study)
• Experimental design including sample data relationships (e.g., which raw data file 

relates to which sample, which assays are technical, which are biological 
replicates)

• Sufficient annotation of the array or sequence features examines (e.g., gene 
identifiers, genomic coordinates)

• Essential laboratory and data processing protocols (e.g., what normalization 
method has been used to obtain the final processed data)

An example: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM5366693

https://www.ncbi.nlm.nih.gov/pubmed/11726920
http://fged.org/projects/minseqe/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM5366693
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Web portal of large consortia

• ENCODE, TCGA, GTEx, 1000 Genomes …

• Only data produced by members of the consortia, follow a set of 
protocols.

• High quality data, often with extensive quality control.

• Publicly available, popular in the research community.

• Often used as benchmark data.
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Specialty databases

• mSigDB, GWAS catalog

• Data often not produced by the database owner.

• Designed for secondary or tertiary analyses.

• Data parsed, collected, and often processed and QCed. 

• The database just serve as an access point for the collection.

• Often easy to query and free to download.
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Various ways to use these data

• Construct informative prior for Bayesian inference

• Build null distributions

• Features to be used in ML algorithms

• Develop supervised ML models
• As positive training data

• As negative training data

• Mine novel biological knowledge
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Use Big Data to construct 
informative prior and null 

distribution

Bayesian inference
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Detection of DE genes  

• A classical problem in gene expression microarray study: detect 
differentially expressed (DE) genes.

• DE genes: genes from various samples are expressed differentially in 
different cell types, tissues, developmental stages or diseases. 

• Typically the number of replicates is rather low. 

17

vs.

vs.

We wish:

But in reality, we often have:
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The problem

How does hierarchical model work
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Std dev vs mean

Std dev vs mean
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Diverse functions

Group 2 Group 3
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Drawbacks of hierarchical models

• Restrict to current dataset.

• May overcorrect, especially at the low end.

• Inflated variance means much less discovery power—conservative. 

Public databases

• 4,600,533 samples

• 159,703 series
• 74,706 experiments

• 2,557,032 assays
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A microarray compendium

• 5,372 samples

• 206 different studies

• From 163 different labs

• Normalized 
Lukk et al. 2010.

The global gene expression map
4 meta groups 15 groups

Group
# of 

samples
Group

# of 

samples

cell line 1259
blood neoplasm cell line 166
non neoplastic cell line 262

solid tissue neoplasm cell line 831

disease 765
blood non neoplastic disease 388

solid tissue non neoplastic disease 377

neoplasm 2315

breast cancer 672
germ cell neoplasm 71

leukemia 567
nervous system neoplasm 112

non breast carcinoma 288
non leukemic blood neoplasm 334

other neoplasm 167
sarcoma 104

normal 1033
normal blood 467

normal solid tissue 566
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Standard deviations from different studies

heart brain

Informative Prior Bayesian Test (IPBT)

• Use historical data to build gene-specific, informative 
priors.

• Conduct Bayesian inference on σi, the standard 
deviation of gene i.

• Either calculate a Bayes factor or test statistics of an 
adjusted t-test and rank genes based on that. 
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Compare variance estimates

FDR boxplot

32
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Spike-in experiment

• FDR when first k declare significant

33

Summary
• Gene-specific properties such as variance can be captured by 

exploiting existing data that are public-available.

• Utilizing historical data in detecting differentially expressed genes is a 
better alternative than classical hierarchical model.

• Using informative prior can overcome difficulties faced in low-sample 
size inference problems. 

• It is possible to reduce the number of replicates. 
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Use Big Data to annotate 
different parts of the genome

Genome-wide Association Studies

From Peggy J. Farnham.



9/7/2021

19

As of 2021-08-16, the GWAS Catalog contains 5273
publications and 276,696 associations.
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SNP(trait)

SNP(trait LD)

SNP(non-trait)

I(1) I(2) I(3) I(4) I(n-1) I(n)…

traseR: trait-associated SNP enrichment 
analysis

• The goal is to link GWAS SNPs to genomic loci to uncover potential connections
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inside outside

#SNP(trait LD) 87 326

#SNP(non-trait) 165,441 3,812,459

Example query result
(H3K4me1 peaks in T cell)

traseR: trait-associated SNPs 

• Easy-to-use bioinformatics tools that is capable of uncovering potential 
connections between genomic loci and complex diseases through 
known GWAS variants.

• Provide annotation to interesting genomic loci found by experiments. 
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Loci2path

• Annotating a given genomic locus or a set of genomic loci for 
the non-coding part of the genome. 

• Takes advantage of the newly emerged, genome-wide and 
tissue-specific expression quantitative trait loci (eQTL) 
information to help annotate a set of genomic intervals in 
terms of transcription regulation. 

• key advantages 
• no longer rely on proximity to link a locus to a gene which has shown 

to be unreliable; 

• provide the regulatory annotation under the context of specific tissue 
types which is important. 

How does it work?

pathway 1

pathway 2

pathway 3

tissue	1

tissue	2

tissue	3

……

eQTL sets Gene	sets

Genome

eQTL loci

Region	1 Region	2Query	Regions

eQTL SNPs	from	tissue	1

eQTL SNPs	from	tissue	2

eQTL SNPs	from	tissue	3

Genes

Association	between	eQTL SNPs	and	Genes

Blue	Color:	genes	and	associated	eQTL SNPs	from	pathway	1	

Green	Color:	genes	and	associated	eQTL SNPs	from	pathway	3	

Red	Color:	genes	and	associated	eQTL SNPs	from	pathway	2	



9/7/2021

22

Workflow

…Brain Skin

chr1					8200690	 8306031
chr1					152536784	 152785813	
chr1					24461438	 24527816
...

Co-localized	eQTL SNPs

Match	genes

Blood

Blood

Brain Blood…

Enrichment	Test

Merge,	Filter	and	Sort

Ioci2path

Tissue	Enrichment	
of	query	regions

Tissued Degree of
Enriched	Pathways

Enriched	Pathway
Ranked	by	Enrichment
or	by	Tissue	Specificity

Pathway	Enrichment	Module Tissue	Specificity	Module

Input

Output

Result - Psoriasis

①

②

③
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Summary
• Annotate non-coding variants using eQTL resources
• Tissue specificity provide additional information
• Tissue degree suggest different categories of pathways 

involved in the pathogenesis of psoriasis
• Enrichment in pathways across immune diseases reveals 

common gene sets of shared disease risks

Use Big Data as features and 
training data in ML 
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Goal: annotate non-coding variants

• Many computational tools developed for coding 
variants
• SIFT 

• PolyPhen

• Method is needed to annotate the majority 
(90%) of GWAS-identified variants of complex 
diseases which are non-coding 
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Boyle et al. 2012 

0.55%

1.48%

1.16%
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Existing methods for annotating noncoding variants
CADD GWAVA

Eigen/EigenPC GenoCanyon

PAFA PINES
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Information sources for identifying 
non-coding variants?

• Phylogenetic conservation
• PhastCon scores

• GERP scores

• Genomic profile
• Whether it overlap with any known 

transcription factor binding motif?

• Epigenomic profile
• TF binding

• Histone modification

• DNA methylation

• ...

DIVAN: DIsease-specific Variant ANnotation

• A unique model for each disease/phenotype
• 45 diseases from 12 categories.

• Using trait-associated SNPs identified by GWAS as 
training data

• Using genomic and epigenomic data as features

• Use machine learning techniques to distinguish risk 
variants from benign variants.
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GWAS SNP collection (1)

GWAS SNP collection (2)
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Epigenomic features utilized

DIVAN

Step 1.
Collect GWAS findings using 
only summary statistic, 
NO individual Genotype is 
needed.

AD GWAS 1

AD GWAS 2

Control SNVsAD-linked SNVs

… H3K4me1

H3K27ac

H3K9me3

H3K4me1

H3K27ac

Step 2.
Apply ML to learn epigenomic 
and biological network features 
of these SNV that are able to 
distinguish AD-linked from controls.

DNase

AD GWAS N

Step 3.
Apply the learned classification
model to score the entire 
genome to predict novel loci 
that linked to AD. 

Predicted 
Scores

Machine learning

Epigenomics profiles

Preliminary 
results indicates 
promising results.

Biological network  profiles
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rs3024505(risk	variant,chr1:206939904)	

H3K27ac(CD14)	

H3K4me1(CD14)	

H3K9me3(CD14)	

H3K27me3(CD14)	

5kb	

FAIRE(K562)	

rs114490664(benign	variant,chr1:968345)	

DNase(CD14)	

5kb	

200bp	 200bp	
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Choose GWAS variants

• We choose 45 diseases/phenotypes spanning 12 
disease/phenotype classes, with at least 50 
disease-SNP associations from Association
Results Browser

• Benign SNPs are sampled from the 1000 
Genomes (Phase I) with same distance (SNP to
nearest TSS) distribution as risk SNPs
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Performance comparison on four diseases

Carotid Artery Diseases
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Ulcerative Colitis
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Multiple Sclerosis

False positive rate
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Macular Degeneration
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Carotid Artery Diseases

Alzheimer Disease

Multiple Sclerosis

Macular Degeneration

The importance of disease-specificity
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AUC values of the 45 diseases tested

AUC from 0.66 to 0.88 with median 0.74

Immune diseases are best predicted
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12:Albuminuria

11:Sleep
10:Parkinson Disease

10:Amyotrophic Lateral Sclerosis
9:Osteoporosis
8:Metabolic Syndrome X
8:Insulin Resistance

8:Diabetes Mellitus, Type 2
7:Schizophrenia
7:Mental Competency
7:Depressive Disorder, Major
7:Bipolar Disorder
7:Attention Deficit Disorder with Hyperactivity
7:Alzheimer Disease
7:Alcoholism
6:Psoriasis

6:Multiple Sclerosis
6:Lupus Erythematosus, Systemic
6:Inflammatory Bowel Diseases
6:Inflammation

6:Diabetes Mellitus, Type 1
6:Crohn Disease

6:Colitis, Ulcerative
6:Behcet Syndrome
6:Asthma

6:Arthritis, Rheumatoid

5:Macular Degeneration
4:Diabetic Nephropathies
3:Stroke

3:Myocardial Infarction
3:Hypertrophy, Left Ventricular
3:Hypertension
3:Heart Failure

3:Death, Sudden, Cardiac
3:Coronary Disease
3:Coronary Artery Disease
3:Carotid Artery Diseases
3:Cardiovascular Diseases

2:Prostatic Neoplasms
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1:Body Weight Changes
1:Body Weight
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6:Asthma

2:Neuroblastoma

7:Alcoholism

1:Body Weight

7:Attention Deficit Disorder with Hyperactivity

3:Coronary Disease

3:Coronary Artery Disease

2:Prostatic Neoplasms

7:Bipolar Disorder

8:Diabetes Mellitus, Type 2

8:Insulin Resistance

3:Hypertension

7:Alzheimer Disease

4:Diabetic Nephropathies

10:Amyotrophic Lateral Sclerosis

2:Breast Neoplasms

7:Schizophrenia

2:Pancreatic Neoplasms

11:Sleep

1:Body Weight Changes

3:Cardiovascular Diseases

7:Mental Competency

3:Hypertrophy, Left Ventricular

7:Depressive Disorder, Major

9:Osteoporosis

3:Carotid Artery Diseases

6:Arthritis, Rheumatoid

8:Metabolic Syndrome X

6:Inflammatory Bowel Diseases

12:Albuminuria

5:Macular Degeneration

6:Inflammation

6:Lupus Erythematosus, Systemic

6:Multiple Sclerosis

3:Death, Sudden, Cardiac

6:Colitis, Ulcerative

1:Obesity
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6:Diabetes Mellitus, Type 1

6:Crohn Disease

6:Psoriasis

DIVAN website

https://sites.google.com/site/emorydivan/
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Summary
• Disease-specific risk variant identification is feasible

• Training data obtained from GWAS results and 1000 Genomes databases.

• Features are collected from genomics profiling data stored in ENCODE, 
REMC.

Extract insights from Big Data



9/7/2021

34

Omicseq: 
An omics data search engine

68

Literature is the major source of biomedical knowledge

• Accurate (with quality control)

• Specific and definitive 

• With established infrastructure and technology to conduct 
effective literature mining 



9/7/2021

35

How much do we know?

• For an obscure gene, little information is known in 
the literature. 

69

Median =6
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Literature is limited
• Only interesting (for authors 

and the journal, not necessarily 
for all audience) and significant 
findings were reported

• Mundane events, like most TF 
binding, gene expression 
changes do not make it to the 
papers

• Polished yet subjective and 
selective

71

Genotype-Tissue expression (GTEx)

72
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Our goals

• To develop a website that links to ALL the biomedical 
data that ever produced

• The database only stores data that are processed and 
ready-to-use

• To build a search engine from which one can get 
information on any gene.

• Do not rely on the metadata.

74
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• Collect different variety of –omics data.

• Develop standardized protocols to process different types 
of data. 

• Store these processed data in databases.

• Collect metadata. 

• Develop a query engine for dataset searching.

• Develop a ranking algorithm “TrackRank”.

• Facilitating easy downloading of the processed, ready-to-
analyze data.

Data types to be included

• From experimental assays
• FPKM values from RNA-seq,
• Read counts at promoters from ChIP-seq,
• P-values of detecting DE genes using microarray,
• Pausing index from GRO-seq,
• Average methylation level at the promoters from 

BS-seq

76
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Compare across data types (I) 

• Our hypothesis is that a gene “plays an important role in a dataset” if 
its score ranks at the top among all genes in the genome.

• We developed trackRank algorithm to rank datasets using this idea.

77

Raw data Summary stat/score Rank
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Omicseq result page

80
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Summary

• Developed Omicseq: a omics data search engine, 

and a biological knowledge discovery tool.

• Does not rely on metadata

• Powered by trackRank algorithm

• Powerful resource for data mining

• Try it http://www.omicseq.org

Ways to handle Big Data

http://www.omicseq.org/
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Distributed systems to handle Big Data

Summary

• Genomics Big data widely available.

• There are many different ways to utilize these Big Data 

• If carefully designed, These Big Data give us opportunity to gain 
insights and make new discoveries. 

• Statistics and ML thinking is required to use these resources 
effectively.

• Need latest informatics methods to enables the use of Big Data.
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Thank you
Questions:

zhaohui.qin@emory.edu


